18.03 Problem Set 7 Solutions: Part 11

Each problem is worth 16 points, spread across Parts I and II. Part I values: 25: 4 points.
26: 5 points; 27: 8 points.

Comment on 1.25, EP 4.1: 7-9: The solution key claims that the integral defining these
Laplace transforms converge only for s > 0 (by which is meant Re (s) > 0), but this is wrong:

these integrals converge for all s, since for t > 2 the functions being integrated are zero so
the improper integral certainly has a limit. More about this when we talk about poles.

25. (a) [4] Write out both sides. You have to use some choices of names for the variables of
integration. I’ll pick u, v, and x, y:
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Matching what f, g, and h are being applied to suggests the change of variables u = y,
v = x —y. In the first integral, then, replace u by y. In the inside integral, y is fixed, so
t t

dv = dz and we can rewrite the first integral as / / f(t —x)g(x — y)h(y) dx dy. Now we
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have to reverse the order of integration, and this gives us the second integral.

(b) [1] w fo t) by definition of convolution. On the other hand, w(t) * ¢(t) is
the system response (from rest initial conditions) to the input signal ¢(¢); so this must be
the unit step response.

(c) (i) [2] sin(0) = 0 and sin’(0) # 0, so we expect a second order system. The weight
function is (for t > 0) a homogeneous solution, and = = sin(t) is a solution to & + z = 0.
The “mass” is 1 here, leading to the correct value sin’(0) = 1.

So we must solve 7 +x = sin(¢). This is the imaginary part of 2+ z = e*. The characteristic
polynomial s + 1 has i as a root, so we are in resonance. The Resonant Response Formula
then gives z, = te/(2i), which has imaginary part x, = —(t/2) cost. This has z(0) = 0,
so let’s just check to see what 4,(0) is—maybe we have already hit on the solution with
rest initial conditions. &, = (t/2)sint — (1/2)cost, and #(0) = —1/2: so we have to add
a homogeneous solution with x,(0) = 0 and #,(0) = 1/2. (1/2)sint does the trick: the
solution is, for ¢t > 0, x = (1/2)(—tcost +sint).

t
(ii) [2] sin(t) * sin(t) = / sin(t — 7)sin(7) dr. To go on, use the sine difference formula
0
sin(t — 7) = sint cos 7 — costsin 7:
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Next sin® 7 = , SO

_[sin?7]" Tt sin(27)]" sin®t t sin(2t)
- =sint — cost [—} + cost = — (cost)= + (cost) :
2 |, 210 0 2 4



[Thls expression has two terms not present in the result from (i). But

sn; t + (cost) sin(2¢) _ (sint) 1-— CZS(Zt) + (cos t)smft) 81275 N cos(t) sin(2t) ;sin(t) cos(2t)’

and the right numerator is the sine difference formula for sin(2t—t), so the two terms combine
to give (sint)/2 and we recover the same function as in (i).]

(iii) [2] The solution to p(D)x = sint (with rest initial conditions) is given by the convolution
¢

sint  sint :/ sin(t — 7)sin(7)dr. When ¢t = kr for k an odd integer), sin(t — 7) =
0

sin(km — 7) = sin 7, so the integrand is sin® 7 and is always positive. As k increases you are
adding up more and more of the humps, and the solution grows. When k is an even integer,
sin(km — 7) = —sinT, so we aren integrating — sin? 7; the integral is negative and it grows
as k grows. In sum, the flipped weight function comes into synchrony with the signal from
time to time, producing large system response.

(iv) [1] From the discussion in (iii), it seems likely that the maxima occur at ¢t = kx for k
an odd integer. Let’s see: in (i) we computed &, = (¢/2)sint — (1/2) cost, so & = (t/2) sint.
This is zero when t is an integral multiple of 7, and the extrema alternate between maxima
and minima.

26. (a) [3] G(s) = / f(at)e " dt. Make a change of variables: u = at, du = adt,
0

f(w)e *™9(1/a) du. Pull the 1/a outside and recognize what is left as F(s/a): so
Go(s) = (1/a)F(s/a). As a check, with f(t) = €', g(t) = e, so F(s) = 1/(s — 1) and
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G(s) =1/(s —a). Well, EF(S/(I) = (Gja)=1) = . G(s).

(b) [3] With f(t) = u(t), F(s) =1/s,s0 L[§(t)] = sF(s)— f(0+) = s/s—1 = 0. The problem
is that (iii) is only true if f’(¢) means the ordinary derivative rather than the generalized
derivative f(t) is continuous for ¢ > 0. The ordinary derivative of u(t) is zero, and is true
that L[0] = sF(s) = 1.
(c) [3] If f(t) is continuous and piecewise differentiable, then the generalized derivative
is f'(t) = (f")(t) + f(0+)d(t), where (f'),(t) is the ordinary derivative. Thus sF(s) =
LIf'()] = LI (8) + f(04)0(2)) = LI ()] + f(04), so LI(f)r(t)] = sF(s) — f(0+).
(d) 2] f'(t) = 6(t) — o6(t — 1) and L[6(t) — d(t — 1)] = 1 — e*. On the other hand,
F(s) = (1/s) — (e7*/s) (using L[u(t)] = 1/s and the s-shift rule), so sF(s) =1—e*.

27. [8] Since L[tf(t)] = —F'(s),
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again to cancel the s* term from the numerator: L[sin(wt) — wt cos(wt))] = (R _:uwz)z’ and
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