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18.03 Problem Set 7 Solutions: Part II


Each problem is worth 16 points, spread across Parts I and II. Part I values: 25: 4 points. 
26: 5 points; 27: 8 points. 

Comment on I.25, EP 4.1: 7­9: The solution key claims that the integral defining these 
Laplace transforms converge only for s > 0 (by which is meant Re (s) > 0), but this is wrong: 
these integrals converge for all s, since for t > 2 the functions being integrated are zero so 
the improper integral certainly has a limit. More about this when we talk about poles. 

25. (a) [4] Write out both sides. You have to use some choices of names for the variables of 
integration. I’ll pick u, v, and x, y: 

t	 t t−u 

((f ∗ g) ∗ h)(t) = (f ∗ g)(t − u)h(u) du = f (t − u − v)g(v)h(u) dv du 
0	 0 0 

t	 t x 

(f ∗ (g ∗ h))(t) = f (t − x)(g ∗ h)(x) dx = f (t − x)g(x − y)h(y) dy dx . 
0	 0 0 

Matching what f , g, and h are being applied to suggests the change of variables u = y, 
v = x − y. In the first integral, then, replace u by y. In the inside integral, y is fixed, so 

t t 

dv = dx and we can rewrite the first integral as f (t − x)g(x − y)h(y) dx dy. Now we 
0 y 

have to reverse the order of integration, and this gives us the second integral. 
t

(b) [1] w(t) ∗ u(t) = 
0 w(t) by definition of convolution. On the other hand, w(t) ∗ q(t) is 

the system response (from rest initial conditions) to the input signal q(t); so this must be 
the unit step response. 

(c)	 (i) [2] sin(0) = 0 and sin�(0) = 0, so we expect a second order system. The weight �
¨function is (for t > 0) a homogeneous solution, and x = sin(t) is a solution to x + x = 0. 

The “mass” is 1 here, leading to the correct value sin�(0) = 1. 

So we must solve x + x = sin(t). This is the imaginary part of ¨¨ z + z = eit . The characteristic 
polynomial s2 + 1 has i as a root, so we are in resonance. The Resonant Response Formula 
then gives zp = teit/(2i), which has imaginary part xp = −(t/2) cos t. This has x(0) = 0, 
so let’s just check to see what ẋp(0) is—maybe we have already hit on the solution with 
rest initial conditions. ẋp = (t/2) sin t − (1/2) cos t, and ẋ(0) = −1/2: so we have to add 
a homogeneous solution with xh(0) = 0 and ẋh(0) = 1/2. (1/2) sin t does the trick: the 
solution is, for t > 0, x = (1/2)(−t cos t + sin t). 

t 

(ii) [2] sin(t) ∗ sin(t) = sin(t − τ ) sin(τ ) dτ . To go on, use the sine difference formula 
0 

sin(t − τ ) = sin t cos τ − cos t sin τ : 

t	 t 

= sin t cos τ sin τ dτ − cos t sin2 τ dτ . · · · 
0	 0 

Next sin2 τ =
1 − cos(2τ )

, so 
2 � �t � τ �t 

� �t
sin2 τ	 sin(2τ ) sin3 t t sin(2t) · · · = sin t 

2 
− cos t + cos t = − (cos t) + (cos t) . 

2 0 4 2 2 40	 0 
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[This expression has two terms not present in the result from (i). But 
sin3 t sin(2t) 

= (sin t)
1 − cos(2t) 

+ (cos t)
sin(2t) sin t cos(t) sin(2t) − sin(t) cos(2t)

,+ (cos t) = + 
2 4 4 4 4 4 

and the right numerator is the sine difference formula for sin(2t−t), so the two terms combine 
to give (sin t)/2 and we recover the same function as in (i).] 

(iii) [2] The solution to p(D)x = sin t (with rest initial conditions) is given by the convolution 
t 

sin t ∗ sin t = sin(t − τ ) sin(τ ) dτ . When t = kπ for k an odd integer), sin(t − τ ) = 
0 

sin(kπ − τ ) = sin τ , so the integrand is sin2 τ and is always positive. As k increases you are 
adding up more and more of the humps, and the solution grows. When k is an even integer, 
sin(kπ − τ ) = − sin τ , so we aren integrating − sin2 τ ; the integral is negative and it grows 
as k grows. In sum, the flipped weight function comes into synchrony with the signal from 
time to time, producing large system response. 

(iv) [1] From the discussion in (iii), it seems likely that the maxima occur at t = kπ for k 
an odd integer. Let’s see: in (i) we computed ẋp = (t/2) sin t − (1/2) cos t, so ẋ = (t/2) sin t. 
This is zero when t is an integral multiple of π, and the extrema alternate between maxima 
and minima. 

∞ 

26. (a) [3] G(s) = f (at)e−st dt. Make a change of variables: u = at, du = a dt, � 0 ∞ 

f (u)e−s(u/a)(1/a) du. Pull the 1/a outside and recognize what is left as F (s/a): so 
0 

G(s) = (1/a)F (s/a). As a check, with f (t) = et , g(t) = eat , so F (s) = 1/(s − 1) and 
1 1 1 

G(s) = 1/(s − a). Well, F (s/a) = 
a((s/a) − 1)

= = G(s). 
a s − a 

(b) [3] With f (t) = u(t), F (s) = 1/s, so L[δ(t)] = sF (s)−f (0+) = s/s−1 = 0. The problem 
is that (iii) is only true if f �(t) means the ordinary derivative rather than the generalized 
derivative f (t) is continuous for t > 0. The ordinary derivative of u(t) is zero, and is true 
that L[0] = sF (s) = 1. 

(c) [3] If f (t) is continuous and piecewise differentiable, then the generalized derivative 
is f �(t) = (f �)r (t) + f (0+)δ(t), where (f �)r (t) is the ordinary derivative. Thus sF (s) = 
L[f �(t)] = L[(f �)r (t) + f (0+)δ(t)) = L[(f �)r (t)] + f (0+), so L[(f �)r (t)] = sF (s) − f (0+). 

(d) [2] f �(t) = δ(t) − δ(t − 1) and L[δ(t) − δ(t − 1)] = 1 − e−s . On the other hand, 
F (s) = (1/s) − (e−s/s) (using L[u(t)] = 1/s and the s­shift rule), so sF (s) = 1 − e−s . 

27. [8] Since L[tf (t)] = −F �(s), 

2d s s − ω2 2ωs 
L[t cos(ωt)] = − =

(s2 + ω2)2 
and L[t sin(ωt)] = . 

ds s2 + ω2 (s2 + ω2)2 

Thus L−1 s 
= 

t sin(ωt)
. For the other we use L[sin(ωt)] = 

ω 
= 

ω(s2 + ω2) 
(s2 + ω2)2 2ω s2 + ω2 (s2 + ω2)2 

2ω3 

again to cancel the s2 term from the numerator: L[sin(ωt) − ωt cos(ωt))] = 
(s2 + ω2)2 

, and 

L−1 1 
= 

sin(ωt) t cos(ωt) 
. 

(s2 + ω2)2 2ω3 
− 

2ω2 


