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Recitation 1, February 7, 2006 
Natural growth and decay 

Solution suggestions 

1. Write down a model for the ant population. 

Let us assume that at t days we have N(t) ants in the square. We have to 
determine how this number changes over a time of Δt days. For example, Δt 
could be 1/2, and we would look at the change of N(t) over the next 12 hours 
starting at t days. First, there is the reproduction of the ants. Within the 
time Δt we have k ΔtN(t) new ants as k is the number of new ants per ant 
per day. It would look like that we have a number of N(t) + k N(t) Δt ants 
after Δt days. But we haven’t taken into account the emigration of some ants. 
Within the time of Δt days a number of a Δt has emigrated. Remember that 
a was the number of ants that emigrates over a whole day. Thus, we get to 

N(t + Δt) � N(t) + k N(t) Δt− a Δt. 

Rearranging this equation in the same way as we did for the radioactive decay 
we obtain 

N(t + Δt) − N(t) � k N(t) − a. (1) 
Δt 

Now, we have to ask ourselves the question what if we had first computed the 
number of emigrated ants and then thought about the reproduction. After the 
emigration, we would have had only N(t) − a Δt ants left. Then, we would get 

N(t + Δt) � N(t) − a Δt + k N(t) − a Δt Δt. 

Rearranging this equation in the same way as before we obtain 

N(t + Δt) − N(t) � k N(t) − a− k a Δt. (2) 
Δt 

Comparing our two approaches we see that in the first case we assumed that all 
of the reproduction occured at t days, and in the second case we assumed that 
all of the reproduction occured at t+Δt days. Both are only two simplifications 
of what really happens. However, in the end Δt will be small. In fact, we want 
to obtain the derivative on the LHS of Eqs. (1) and (2). If we make Δt small 
the difference of Eqs. (1) and (2) is small compared to k N(t) − a. Therefore, 
we will neglect the term k a Δt on the RHS of Eq. (2). Then, it doesn’t matter 
which approach we choose. We obtain from Eqs. (1) and (2) the differential 
equation 

Ṅ(t) = k N(t) − a. (3) 

2. Find the general solution of this equation. 
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We can cross multiply Eq. (3) to obtain 

dN 
= k. (4) aN − 

k 

By integration, this becomes 

ln 
a 

N −
 = k t + C1 . 
k 

Solving for N , we finally get 

a 
N = N (t) = 

k 
± e C1 e k t . 

It is better to write 

a 
N = N (t) = + C e k t 

k 

where C is now an arbitrary real constant. The value zero for C is now included 
so that we don’t miss any solution. As in the case of the radioactive decay, we 
like to express C through the number N0 of ants we had when we started the 
experiment. We write 

a 
N0 = N (t = 0) = + C. 

k 

Thus C = N0 − a/k and the final answer is 

a a 
N (t) = + N0 − e kt . (5) 

k k 

3. Check that the proposed solution satisfies the ODE. 

We take the derivative of our proposed solution (5) and obtain 

kt Ṅ(t) = 0 + k N0 − 
a 

e . 
k 

We also check 

a a kt k N (t) − a = a + k N0 − e kt − a = k N0 − e . 
k k 

Thus, N (t) is a solution to the differential equation (3). 

4. There is a “steady state” (also known as constant, or equilibrium) solution. 
Find it. Does the way the solution depends upon k and a make sense? (That 
is: do the units come out right? Does it behave right when a is large, or small, 
and when k is large, or small?) 

We see that the steady state solution is N (t) = a/k. If we set our starting 
population N0 equal to a/k ants then it remains at this number for all times. 
It means that we have an equilibrium between some ants leaving and them 
being replaced by reproduction. The units for k are 1/[day] and for a they are 
[ants]/[day], so the ratio a/k gives in fact a number of ants. 


