
Recitation 2, February 9, 2006 

Direction fields, integral curves, isoclines 

Solution suggestions 

1. Draw a big axis system and plot some isoclines, especially the nullcline. 
Plot a few solutions. 

Here is a picture of some isoclines and a few solutions created by the Mathlet 
‘Isoclines’. 

2. One of the integral curves seems to be a straight line. Is this true? What 
straight line is it? (i.e. for what m and b is y = mx + b a solution?) 

We want the straight line y = mx + b to be an integral curve. We compute 

y� = m 

and 
x − 2y = (1 − 2m)x − 2b . 

1 1For the two to be equal we must have m =
 and then b = The straight 
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−
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line that is a solution is then 
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y = . 

2 
x − 

4 



3. As a general thing, if a straight line is an integral curve, how is it related 
to the isoclines of the equation? What happens in our example? 

If a straight line is a solution, then the direction field along that straight line 
has to be constant, with slope equal to the slope of the line; so the solution is 
an isocline. 

In our case F (x, y) = x − 2y, so the isocline F (x, y) = c can be written as the 
equation for a straight line, 

1 c 
y = . 

2 
x −

2 
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2 , so it 

checks. 

4. It seems that all the solutions become asymptotic as x → ∞. Explain at 
least why solutions get trapped between parallel lines of some fixed slope . 

If an integral curve crosses the “null­cline” it has to stay underneath of it for 
increasing x. The reason is that the slope of the isocline is 1 

2 , and thus steeper 
than the value of the directional field along this isocline which is 0. We also 

Since the slope has to be equal to the directional field we obtain c
= 

determined that the isocline for c = 1 
2

is an integral curve. But integral curves 
cannot cross each other. Thus the solution has to stay between the isocline for

c = 0 and c =
 1 

2
.
 One can repeat this argument replacing the upper isocline,


3 
8 , ... and so on. We then see that 

the asymptotics is in fact given by the isocline for c = 

1i.e. the null­cline, by the isocline for c =
 ,
4 
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2
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For integral curves coming from below, we can make the same argument by

looking at the isoclines for c = 1 and c = 1 

2
.


5. What can be said in general about when a solution has a critical point? 
Where are the critical points of the solutions in our example? How many 
critical points can a single solution have? Can you predict on the basis of an 
initial value whether or not a solution will have a critical point? When there 
is one, is it a minimum or a maximum? 

A critical point is given by y� = 0. Our differential equation is y� = F (x, y). 
Therefore, we know that the critical points must lie on the null­cline. In 
general, integral curves can have more than one critical point. 

In the case of F (x, y) = x − 2y however, an integral curve can intersect the 
nullcline at most one time (as explained in the answer to question 4). So it 
can have at most one critical point. The question is whether an integral curve 
in fact crosses this isocline at all. The xy­plane is divided into two halfs by the 
isocline for c =
 1 

2
which is also an integral curve. No integral curve can cross


this line. A solution that starts below this line will never be able to reach the 
isocline for c = 0 above, thus can never have a critical point. 

What about the solutions that start above the isocline for c =
 1 
2 ? If you start 

with an integral curve that starts above the isocline for c = −1, say, you see it 
is crossing the null­cline and is then asymptotically approaching the isocline 
for c
=
 1 

2
.
 Thus, this solution has a critical point. You will see that starting 

above the isocline for c = 1 
2

is really enough – it means that for some x (which




might be far on the left side) it has crossed the null­cline. Now, is this critical 
point a maximum or minimum? We take the derivative of our differential 
equation and obtain � �

y�� = x − 2y 
� 
= 1 − 2y� . 

Along the null­cline y� = 0. Therefore, y�� = 1 along the null­cline. The critical 
point is a minimum. 

1 
2

itself does not have a critical point. Finally, the integral curve c = 

26. In lecture the equation y� − x was discussed. There is more to say 
about that example than there was time to describe. 

= y
Sketch some isoclines 

and some solutions. One question is: where are the critical points of solutions? 
Can a solution have more than one? 

Here is a picture of some isoclines and a few solutions created by the Mathlet 
‘Isoclines’. 

Critical points are found if the solution crosses the null­cline, i.e. the parabola

y2 = x (opening to the right). Once a solution crosses the upper branch of this

isocline it cannot cross the lower branch as well (which would then make it

having two critical points). The reason is the following: the lower branch of the

parabola is described by y = −

√
x. So the slope of this isocline itself is −
 1 

2
√

x 

which is always negative (pointing downwards). The value of the directional 
field on the null­cline is zero and thus steeper (or pointing horizontally). Thus, 
a solution cannot cross the lower branch of the null­cline. 



7. How about points of inflection (where y�� = 0)? Hint: differentiate the 
ODE and then replace y� with the right hand side of the original ODE. (You 
may want to think about what happens in the y� = x − 2y example as well.) 

We have � �
2 2 y�� = y − x 

� 
= 2yy� − 1 = 2y(y − x) − 1 . 

Setting the RHS equal to zero we see that the points of inflection occur along 
the graph of 

12 x = y −
2y 

in the xy­plane. 

In the example y� = x − 2y we obtain 

y�� = 1 − 2y� = 1 − 2x + 4y . 

Setting the RHS equal to zero, we obtain the equation of the line 

1 1 
y = . 

2 
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The point is that every point along a straight line is a point of inflection, 
according to the definition y” = 0. The points of the straight line integral 
curve are the only points of inflection on any integral curve. 

8. A “separatrix” is a solution such that solutions on one side of it have a fate 
2entirely different from solutions on the other side. The equation y� = y − x 

exhibits a separatrix. Sketch it and describe the differing behaviors. 

If you play with the Mathlet you will see that there are two types of solutions. 
Either a solution y(x) blows up in a finite time x or the solution approaches 
the lower branch of y2 = x which means y(x) → −

√
x for x →∞. 

Here is a picture of solutions near the separatrix created by the Mathlet ‘Iso­
clines’. 




