Lectures (Video)
- 1. The Fourier Series
- 2. Periodicity, Modeling A Signal
- 3. Convergence
- 4. Inner Product, Complex Exponentials
- 5. Fourier Transforms
- 6. Fourier Inversion
- 7. Duality Property
- 8. Stretch Theorem Formula, Convolution Formula
- 9. Continuing Convolution
- 10. Central Limit Theorem And Convolution
- 11. Best Class Of Signals For Fourier Transforms
- 12. Generalized Functions
- 13. Fourier Transform Of A Distribution
- 14. The Delta Function And Sampling
- 15. Application Of The Fourier Transform
- 16. Shah Function, Poisson Summation Formula
- 17. Interpolation Problem
- 18. Sampling Rate, Nyquist Rate, Aliasing
- 19. Discrete Version Of The Fourier Transform
- 20. Discrete Complex Exponential Vector
- 21. Review Of Basic DFT Definitions
- 22. FFT Algorithm
- 23. Linear Systems
- 24. Impulse Response, Schwarz Kernel Theorem
- 25. Fourier Transform For LTI Systems
- 26. Higher Dimensional Fourier Transform
- 27. Fourier Transforms Of Seperable Functions
- 28. Shift Theorem
- 29. Shahs, Lattices, And Crystallography
- 30. Tomography And Inverting The Radon Transform
Fourier Transform and its Applications - Lecture 17
Get the Flash Player to view video.
Lecture 17 - Interpolation Problem
Review Of Main Properties Of The Shah Function, Setup For The Interpolation Problem, Bandwidth Assumption, Solving For Exact Interpolation For Bandlimited Signals, Periodizing The Signal By Convolution With The Shah Function, Solution Of The Interpolation Problem
Prof. Brad G Osgood
The Fourier Transform and its Applications EE261 (Stanford University: Stanford Engineering Everywhere) http://see.stanford.edu Date accessed: 2009-09-24 License: Creative Commons Attribution 3.0 |