Lectures (Video)
- 1. Introduction and Newtonian Mechanics
- 2. Vectors in Multiple Dimensions
- 3. Newton's Laws of Motion
- 4. Inclined Planes
- 5. Work-Energy Theorem and Law of Conservation of Energy
- 6. Law of Conservation of Energy in Higher Dimensions
- 7. Kepler's Laws
- 8. Dynamics of Multiple-Body System and Law of Conservation of Momentum
- 9. Rotations, Part I: Dynamics of Rigid Bodies
- 10. Rotations, Part II: Parallel Axis Theorem
- 11. Torque
- 12. Introduction to Relativity
- 13. Lorentz Transformation
- 14. Introduction to the Four-Vector
- 15. Four-Vector in Relativity
- 16. Taylor Series and Other Mathematical Concepts
- 17. Simple Harmonic Motion
- 18. Introduction to Waves
- 19. Waves
- 20. Fluid Dynamics, Statics and Bernoulli's Equation
- 21. Thermodynamics
- 22. Boltzmann Constant and First Law of Thermodynamics
- 23. Second Law of Thermodynamics and Carnot's Engine
- 24. Entropy
Fundamentals of Physics - Lecture 20
Get the Flash Player to view video.
Lecture 20 - Fluid Dynamics, Statics and Bernoulli's Equation
The focus of the lecture is on fluid dynamics and statics. Different properties are discussed, such as density and pressure. The Archimedes' Principle is introduced and demonstrated through a number of problems. The final topic of the lecture is Bernoulli's Equation.
Prof. Ramamurti Shankar
PHYS 20 Fundamentals of Physics (Fall, 2006) (Yale University: Open Yale) http://oyc.yale.edu Date accessed: 2009-04-11 License: Creative Commons BY-NC-SA |